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A new stimulated echo based pulsed gradient spin–echo sequence, MAG-PGSTE, has been developed for
the determination of self-diffusion in magnetically inhomogeneous samples. The sequence was tested on
two glass bead samples (i.e., 212–300 and <106 lm glass bead packs). The MAG-PGSTE sequence was
compared to the MAGSTE (or MPFG) [P.Z. Sun, J.G. Seland, D. Cory, Background gradient suppression in
pulsed gradient stimulated echo measurements, J. Magn. Reson. 161 (2003) 168–173; P.Z. Sun, S.A. Smith,
J. Zhou, Analysis of the magic asymmetric gradient stimulated echo sequence with shaped gradients, J.
Magn. Reson. 171 (2004) 324–329; P.Z. Sun, Improved diffusion measurement in heterogeneous systems
using the magic asymmetric gradient stimulated echo (MAGSTE) technique, J. Magn. Reson. 187 (2007)
177–183; P. Galvosas, F. Stallmach, J. Kärger, Background gradient suppression in stimulated echo
NMR diffusion studies using magic pulsed field gradient ratios, J. Magn. Reson. 166 (2004) 164–173, P.
Galvosas, PFG NMR-Diffusionsuntersuchungen mit ultra-hohen gepulsten magnetischen Feldgradienten
an mikroporösen Materialien, Ph.D. Thesis, Universität Leipzig, 2003, P.Z. Sun, Nuclear Magnetic Reso-
nance Microscopy and Diffusion, Ph.D. Thesis, Massachusetts Institute of Technology, 2003] sequence
and Cotts 13-interval [R.M. Cotts, M.J.R. Hoch, T. Sun, J.T. Marker, Pulsed field gradient stimulated echo
methods for improved NMR diffusion measurements in heterogeneous systems, J. Magn. Reson. 83
(1989) 252–266] sequence using both glass bead samples. The MAG-PGSTE and MAGSTE (or MPFG)
sequences outperformed the Cotts 13-interval sequence in the measurement of diffusion coefficients;
more interestingly, for the sample with higher background gradients (i.e., the <106 lm glass bead sam-
ple), the MAG-PGSTE sequence provided higher signal-to-noise ratios and thus better diffusion measure-
ments than the MAGSTE and Cotts 13-interval sequences. In addition, the MAG-PGSTE sequence provided
good characterization of the surface-to-volume ratio for the glass bead samples.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction so-called 9-interval, 13-interval (Fig. 1A), and 17-interval STE-
It has long been realized that the existence of background gra-
dients (also referred to as internal gradients or static gradients (g0))
caused by the imperfect shimming of B0 and/or differences in mag-
netic susceptibility both within and around the sample can cause
deleterious effects on the determination of self-diffusion [8].
Therefore, background gradient suppression pulsed gradient
spin–echo (PGSE) sequences have been intensively studied [7,9–
27] and this area has recently been reviewed by Zheng and Price
[14]. With short exposure (i.e., encoding periods (se)) to back-
ground gradients and transverse relaxation, stimulated echo (STE,
p/2–se–p/2–ss–p/2–se–Echo) based PGSE sequences outperform
Hahn spin–echo based PGSE sequences in the presence of back-
ground gradients due to their lower susceptibility to the attenua-
tion by background gradients, and to the attenuation by
transverse relaxation. In 1989, Cotts et al. [7] developed the
ll rights reserved.
based background gradient suppression PGSE sequences. Owing
to the use of bipolar gradient pairs, the 13-interval and 17-interval
sequences and their derivatives afford longer gradient application
periods, and thus find wide applications in diffusion experiments
on magnetically inhomogeneous samples [19–21,24].

Up to now, most of the background gradient suppression se-
quences are based on the assumption that the background gradient
experienced by each spin is constant during the PGSE sequence,
and p pulse trains and bipolar gradient pairs have been utilized
in these sequences to suppress the effects of background gradients.
However, when the mean-squared-displacement (MSD) of the
spins during the PGSE experiment becomes comparable with the
length scale of the inhomogeneity of background gradients, the
background gradient experienced by each spin becomes non-con-
stant both spatially and temporally [24,28,29]. By replacing the ini-
tial symmetric bipolar gradient pairs by asymmetric bipolar
gradient pairs, Sun et al. [1–3,6] and Galvosas et al. [4,5] indepen-
dently modified the 13-interval sequence into a series of STE-based
PGSE sequences (i.e., MAGSTE or MPFG sequences) containing
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Fig. 1. (A) The Cotts 13-interval sequence [7] with half-sine shaped gradients. The phase cycle for the pulse sequence is /1 = x; /2 = x, y, �x, �y; /3 = x, y, �x, �y, �x, �y, x, y;
/4 = x; /5 = x, y, �x, �y, �x, �y, x, y; /r (receiver phase) = �x, x, �x, x, x, �x, x, �x. (B) The MAGSTE sequence with half-sine shaped gradients [2]. The phase cycle for the pulse
sequence is /1 = x; /2 = x, �x, x, �x, y, �y, y, �y; /3 = x, x, �x, �x, y, y, �y, �y; /4 = y; /5 = y; /r (receiver phase) = x, �x, �x, x. (C) The MAG-PGSTE sequence with half-sine
shaped gradients. The phase cycle for the pulse sequence is /1 = x; /2 = x, �x, x, �x, y, �y, y, �y; /3 = x, x, �x, �x, y, y, �y, �y; /4 = y; /5 = y, y, �y, �y, �x, �x, x, x; /r (receiver
phase) = x, �x, �x, x. The narrow bars represent p/2 and p RF pulses, g01 and g02 are background gradients, g1, g2 and crusher are half-sine shaped gradient pulses with
different amplitudes. The variable gradient fill for g01 and g02 signifies that the background gradients may fluctuate during the encoding periods.
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asymmetric gradient pairs with the amplitudes of the gradient
pulses set at ‘‘magic” ratios (i.e., the gradient amplitude ratios
which result in zero cross-term between applied and background
gradients), and these sequences can suppress the effects of non-
constant background gradients in one transient (e.g. Fig. 1B). For
the 13-interval sequence, the cross-term generated in the first
encoding period is cancelled by the cross-term generated in the
second encoding period with appropriate parameter settings (i.e.,
Ecross – 0 at the end of the first encoding period and Ecross = 0 at
the end of the second encoding period; Ecross is the cross-term
based spin–echo attenuation.) [7,14]; while for the MAGSTE or
MPFG sequence, the cross-terms generated in the two encoding
periods are suppressed independently (i.e., Ecross = 0 at the end of
the first or second encoding period) [1,4].

It has been shown that the 17-interval sequence outperforms
the 13-interval sequence in the suppression of the g0-only-based
attenuation (Eg0

), which becomes very significant in the presence
of high background gradients [7]. Therefore, a new STE-based PGSE
sequence, MAG-PGSTE (Fig. 1C), which can suppress the effects of
non-constant background gradients with a higher signal-to-noise
(S/N) ratio, was developed by replacing the symmetric bipolar gra-
dient pairs in the 17-interval sequence by asymmetric bipolar gra-
dient pairs with the gradient amplitudes set at the ‘‘magic” ratio
[1,4]. The utility of the new sequence is demonstrated using two
samples containing glass bead packs (NB with bead diameters
212–300 and <106 lm) filled with CuSO4-doped water. The perfor-
mance of the new sequence was contrasted with the MAGSTE and
Cotts 13-interval sequences.

2. Theory

In many samples the background gradients can approach the
magnitude of the applied gradients. For example, the background
gradients in the 212–300 and <106 lm glass bead samples have
been estimated to be 0.2 and 1.1 T m�1 (e.g. [24]), respectively,
which are comparable to the maximum gradient strength of a com-
mercial high-resolution gradient NMR probe (e.g. 0.6 T m�1), and
thus can cause a poor S/N ratio. Therefore, more p pulses are
needed in the encoding periods to minimize the attenuation
caused by the background gradients and thus increase the S/N ra-
tio. This thinking led to the development of the MAG-PGSTE se-
quence by integrating asymmetric bipolar gradient pairs with the
Cotts 17-interval sequence [7] containing three-p-pulse CPMG
train [10] in each encoding period.

Following Stejskal and Tanner analysis based on solving the
Bloch–Torrey equations [8], the applied gradients based echo
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attenuation (Eg), Ecross, and Eg0 of the MAG-PGSTE sequence with
half-sine shaped gradients (Fig. 1C) for free diffusion are derived as

Eg ¼ exp � 1
p2 c2d2D 4Dþ 8s1 � dþ 4d3 � 4d1ð Þðg1 � g2Þ

2
h�
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where g = g2/g1, and

Eg0
¼ exp �2c2s3

1D g2
01 þ g2

02

� �� �
¼ expð�bg0

DÞ: ð3Þ

For Eqs. (1)–(3), g1, g2, g01, g02, and the timing parameters are de-
fined in Fig. 1C.

In general, we are concerned with the strong background gradi-
ents in porous media where measured diffusion coefficients
become time-dependent due to the existence of geometrical
restrictions. The time-dependence of the measured diffusion coef-
ficients carries structural information of the porous media. At short
diffusion times, the time-dependent diffusion coefficient (D(D)) is
defined as [30,31]

DðDÞ ¼ D0 1� 4
9
ffiffiffiffi
p
p S

V

ffiffiffiffiffiffiffiffiffi
D0D

p
þ OðD0DÞ

	 

; ð4Þ

where D0 is the free diffusion coefficient, S/V is the surface-to-
volume ratio.

Including the time-dependence of measured diffusion
coefficients, Eqs. (1)–(3) can be rewritten as [18,19,30]

Eg ¼ expð�bgDðDÞÞ; ð5Þ
Ecross ¼ expð�bcrossDðDÞÞ; ð6Þ
Fig. 2. (A) The magic ratio for the MAG-PGSTE sequence when d2 = 0.2 ms, d1 ranging fro
sequence when d2 = 0.2 ms, d1 ranging from 0 to 0.5 ms, and d ranging from 0.8 to 4 ms
and

Eg0
¼ expð�bg0

DðDÞÞ: ð7Þ

By solving bcross = 0 for g when d1 = d3 or d2 = d3, the magic
gradient amplitude ratio for suppressing the cross-terms between
the applied and background gradients is determined to be

gMAG-PGSTE ¼
2s2

1 � 2ds1 þ 4d1s1 � d2 � 2dd1 � 2d2
1 þ 4d2=p2

� �
2s2

1 þ 2ds1 þ 4d1s1 � d2 � 2dd1 � 2d2
1 þ 4d2=p2

� � :
ð8Þ

To assure the validity of Eqs. (1)–(3) in our data analysis, the
maximum echo attenuation was controlled to be 80% (i.e., 20% of
the original intensity remaining) in all data analysis and the
condition, namely qL� 1 (q = (2p)�1cgd and L is the length of the
sample), was also fulfilled by setting the minimum gradient
strength to 0.005 T m�1 in all our experiments [20].

3. Materials and methods

Micro-spherical acid-washed glass beads with sizes of <106 and
212–300 lm (Sigma–Aldrich Inc., St. Louis, MO) were transferred
into two 5 mm NMR tubes (Wilmad, Buena, NJ) filled with
0.01 M CuSO4–5H2O solution. Another 5 mm NMR tube containing
0.01 M CuSO4–5H2O solution was used as a reference sample. The
diffusion coefficient of water in the reference sample was found to
be 2.33 ± 0.01 � 10�9 m2 s�1 at 25 �C using the standard Hahn
spin–echo PGSE sequence.

All diffusion measurements were conducted ‘unlocked’ on a
Bruker 500 MHz Avance NMR spectrometer (Karlsruhe, Germany)
with a BBI probe at 25 �C. By using the MAG-PGSTE and Cotts
13-interval [7] sequence with half-sine shaped gradients, diffusion
measurements were conducted with s2 = 3.05, 5.05, 7.05, 10.05,
15.05, 22.05, 31.05, 46.05, 63.05, 91.05, 127.05, 255.05,
511.05 ms; by using the MAGSTE [1] sequence with half-sine
shaped gradients, diffusion measurements were conducted with
s2 = 7.05, 10.05, 15.05, 22.05, 31.05, 46.05, 63.05, 91.05, 127.05,
255.05, 511.05 ms. For all diffusion measurements, d = 3 ms,
se = 10 ms, recycle delay = 5 s (NB > 5 � T1), and number of
scans = 8. The delays are defined in Fig. 1. Each diffusion measure-
ment involved 21 z-gradient strengths (e.g. g1 for the MAG-PGSTE
and Cotts 13-interval sequence and g2 for the MAGSTE sequence)
that varied linearly from 0.005 T m�1 to the value which gave an
attenuation of 80–90%.
m 0 to 0.5 ms, and d ranging from 0.8 to 4 ms. (B) The magic ratio for the MAGSTE
.



Fig. 3. A series of 500 MHz 1H (A) MAG-PGSTE and (B) MAGSTE spectra on the sample containing CuSO4-doped water and <106 lm glass beads. For both sequences, d = 3 ms,
se = 10 ms, D = 41 ms, receiver gain = 128 (MAG-PGSTE) and 812 (MAGSTE). As can be clearly seen the MAG-PGSTE spectra have much higher S/N.

Fig. 4. A plot of D(D) vs. D for the diffusion measurements of <106 and 212–
300 lm glass bead samples are shown in solid and open symbols, respectively. The
data obtained with the MAG-PGSTE, MAGSTE, and Cotts 13-interval sequence are
indicated by squares, circles, and triangles, respectively.
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All data were processed using Origin (OriginLab, Northampton,
MA). The time-dependent diffusion coefficient was determined
from fitting the single-exponential equation y ¼ Me�bg DðDÞ (M is a
constant, bg and D(D) are defined in Eqs. (1) and (4), respectively.)
to the echo attenuation profiles.

4. Results and discussion

For the MAGSTE sequence developed by Sun et al. [1], the cross-
term caused by non-constant background gradients can be sup-
pressed, only when the bipolar gradients are symmetrically placed
around p pulses. However, for the newly developed MAG-PGSTE
sequence, a unique magic ratio (i.e., gMAG-PGSTE = g2/g1) has been
obtained for the suppression of the cross-term when d1 = d3 or
d2 = d3. Especially, when d1 = d3, both d1 and d3 can be set as small
as possible to minimize eddy current effects. The MPFG sequence
also has this property [4].

Based on the simulations, the MAG-PGSTE sequence has a magic
ratio (gMAG-PGSTE) smaller than the magic ratio for the MAGSTE
sequence (gMAGSTE), and thus giving higher applied gradient encod-
ing efficiency. As shown in Fig. 2A, when d2 = 0.2 ms, d1 ranging
from 0 to 0.5 ms, and d ranging from 0.8 to 4 ms, gMAG-PGSTE ranges
from 0.07 to 0.18; while, in Fig. 2B, when d2 = 0.2 ms, with d1 rang-
ing from 0.2 to 0.5 ms, and d ranging from 0.8 to 4 ms, gMAGSTE

ranges from 0.17 to 0.24.
As shown in Fig. 3, for the <106 lm glass bead sample, the

MAG-PGSTE spectra had a much better S/N ratio than the MAGSTE
spectra.

The utility of the MAG-PGSTE sequence has been demonstrated
on glass bead packs filled with CuSO4–5H2O solution. To show the
dependence of D(D) on D, D(D) was plotted against D (Fig. 4). As
shown in Fig. 4, all diffusion measurements were lower than the
diffusion coefficient of water in the reference sample (i.e.,
2.33 ± 0.01 � 10�9 m2 s�1) due to the effects of highly intense and
inhomogeneous background gradients [3,11,28,29,32], which is
analogous to the apparent slowing down of diffusion in pores with
relaxing boundaries [33]. For the <106 lm glass bead sample, the
MAG-PGSTE sequence consistently gave higher diffusion measure-
ments owing to its high efficiency in the suppression of both Ecross

and Eg0
except that the MAGSTE sequence gave the highest diffu-

sion measurement when D = 17.05 ms. For the 212–300 lm glass
bead sample, the MAGSTE sequence consistently gave higher diffu-
sion measurements at short diffusion times (i.e., 6100 ms) due to
its higher efficiency in the suppression of Ecross while, at long diffu-
sion times, the MAGSTE diffusion measurements overlapped with
the MAG-PGSTE and Cotts 13-interval diffusion measurements.

To test the sphere size characterization capability of the MAG-
PGSTE sequence, Eq. (4) was fitted to the diffusion measurements
at short diffusion times (i.e., 6100 ms), and the measured bead
diameters and S/V’s are shown in Table 1. The measured bead



Table 1
Bead diameters and S/V’s of the glass bead samples determined from data obtained
with the MAG-PGSTE, MAGSTE, and Cotts 13-interval sequence

Sequence Sample Measured diameter (lm) S/V (lm�1)

MAG-PGSTE <106 lm beads 93 0.105 ± 0.007
212–300 lm beads 280 0.035 ± 0.002

MAGSTE <106 lm beads 61 0.16 ± 0.02
212–300 lm beads 218 0.045 ± 0.002

Cotts 13-interval <106 lm beads 122 0.08 ± 0.03
212–300 lm beads 350 0.028 ± 0.002

S/V’s were obtained by fitting Eq. (4) to the diffusion data at short diffusion times
(i.e., 6100 ms) and the measured bead diameters were calculated by the use of
d = 6(1// � 1)/S/V [19] with a porosity of / = 0.38 (e.g. [19]).

44 G. Zheng, W.S. Price / Journal of Magnetic Resonance 195 (2008) 40–44
diameters using the MAG-PGSTE and MAGSTE sequence matched
the nominal bead diameters very well. Although the Cotts 13-
interval sequence can differentiate between the two glass bead
samples, it over-estimated the bead diameters for both glass bead
samples.

5. Conclusions

Due to its higher efficiency in suppressing both Ecross and Eg0
, the

MAG-PGSTE sequence outperformed the MAGSTE and Cotts 13-
interval sequence in diffusion measurements at different diffusion
times in the presence of large and highly inhomogeneous back-
ground gradients in a glass bead sample composed of <106 lm glass
beads. The MAG-PGSTE sequence also provided accurate sphere size
and S/V measurements for both glass bead samples.
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